Pro-definability of spaces of definable types
نویسندگان
چکیده
We show pro-definability of spaces definable types in various classical complete first order theories, including o-minimal Presburger arithmetic, $p$-adically closed fields, real and algebraically valued fields ordered differential fields. Furthermore, we prove other distinguished subspaces, some which have an interesting geometric interpretation. Our general strategy consists showing that are uniformly definable, a property implies using argument due to E. Hrushovski F. Loeser. Uniform definability is finally achieved by studying classes stably embedded pairs.
منابع مشابه
Definable norms and definable types over Banach spaces
A central question in Banach space theory has been to identify the class of Banach spaces that contain almost isometric copies of the classical sequence spaces `p and c0. Banach space theory entered a new era in the mid 1970’s, when B. Tsirelson [34] constructed the first space not containing isomorphic copies any of the classical sequence spaces. Tsirelson’s space has been called “the first tr...
متن کاملsome properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولDeciding the weak definability of Büchi definable tree languages
Weakly definable languages of infinite trees are an expressive subclass of regular tree languages definable in terms of weak monadic second-order logic, or equivalently weak alternating automata. Our main result is that given a Büchi automaton, it is decidable whether the language is weakly definable. We also show that given a parity automaton, it is decidable whether the language is recognizab...
متن کاملInd- and pro- definable sets
We describe the indand procategories of the category of definable sets, in some first order theory, in terms of points in a sufficiently saturated model.
متن کاملDefinable Types in Presburger Arithmetic
We consider the first order theory of (Z,+, <), also known as Presburger arithmetic. We prove a characterization of definable types in terms of prime models over realizations, which has a similar flavor to the Marker-Steinhorn Theorem of o-minimality. We also prove that a type over a model is definable if and only if it has a unique coheir to any elementary extension, which is a characterizatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2021
ISSN: ['2330-1511']
DOI: https://doi.org/10.1090/bproc/85